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Abstract 
Sarcomeres are the smallest independent unit of force production in the muscle. Current theoretical 
models of sarcomere in series, i.e. a myofibril, predict instability on the descending limb region of the force-
length relationship. However, experimental evidence suggests that sarcomeres can be stable on the 
descending limb region with non-uniform lengths. The models presented re-evaluates the assumption that 
sarcomeres are independent units of contraction. Instead, it is hypothesized that there is a dependency 
between sarcomeres for force generation. Sarcomeres in series were modelled, with force as the dependent 
variable and sarcomere length and time as the independent variables. Models were developed with both 
independent and dependent sarcomere force generation. The independent sarcomere models resulted in 
instability that current theoretical models predict. Two cases of dependent sarcomere models were 
implemented, both included a shift in the passive force with varying degrees of dependency between 
adjacent sarcomeres. With these models, there was either stability with non-uniform length, stability with 
uniform length, or instability on the descending limb region of the force-length relationship. The major 
finding was that mathematically, sarcomeres with a variable passive force can reach equilibrium at various 
lengths if a dependency between adjacent sarcomeres is incorporated into the models.  
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Introduction 
Muscle Anatomy and Physiology 

Sarcomeres are the smallest, independent 
unit of contraction in skeletal muscles. Within 
each skeletal muscle cell are longs strands of 
sarcomeres in series called myofibrils, which 
cause muscle cell contraction. Forces generated 
by a sarcomere can be broken into active and 
passive forces. Active forces result from neural 
stimulation of muscles and are most commonly 
thought to be generated through cross bridges in 
accordance with the cross-bridge theory [1]. 
Passive forces do not involve neural stimulation 
and are generated from the elasticity contained in 
sarcomeres, primarily through the protein titin 
[2]. Early studies have shown that both the active 
force and the passive force of a single sarcomere 
depend on the length of a sarcomere, as described 
by the force-length relationship [3]. The total 
sarcomere force is the summation of the active 
and passive forces at any given length.  

 
Myofibril: Characterizing Sarcomeres in Series 

The linearized force-length relationship 
suffices in describing the isometric force of 
individual sarcomeres when stimulated at a given 
sarcomere length. However, the application of 
this relationship to myofibrils leads to instability 
on the descending limb region. Consider two 
sarcomeres in series undergoing an isometric 
contraction initially at two slightly different 
lengths (Fig. 1). Applying the force-length 
relationship, the sarcomere with the shorter 
length will generate a larger contractile force 
because of the negative force-length slope. With a 
larger contractile force, this sarcomere will 
become even shorter and will generate an even 
larger force. This positive feedback loop is

 unstable and would theoretically pull the longer 
sarcomere to greater lengths until they reach 
equilibrium with one sarcomere on the ascending 
limb region (sarcomere length ≲ 2.25 𝜇𝑚) and 
the other on the passive force region (sarcomere 
length ≳ 3.65 𝜇𝑚). Myofibrils do not 
experimentally behave this way, and there is a 
gap between theory and experimental evidence. 
The models developed in this study are aimed at 
examining this gap by looking at new ways to 
model myofibrils. 

          
Literature  
Empirical Studies on the Myofibril 

One discrepancy discovered in activated 
myofibrils is the idea of uniform sarcomere length 
at equilibrium. From the force-length relation, if 
all sarcomeres are in the same region and have 
the same force, they must have the same length. 
However, when stretching single, isolated 
myofibrils on the descending limb of the force-
length relationship, great sarcomere length non-
uniformities are observed at equilibrium [4]. 
When the activated myofibrils in this experiment 
were stretched, all sarcomeres were rapidly 
stretched and reached equilibrium at various 
lengths on the descending limb region of the 
force-length relationship (Fig. 2). In experiments 
by Telley and colleagues, the dynamics of cardiac 
myofibrils were monitored through fluorescent 
tagging, totaling 100 sarcomeres in series [5]. Of 
the 100 sarcomeres, 11 were dynamically traced 
over time. These 11 sarcomeres reached 
equilibrium at non-uniform length on the 
descending limb region of the force-length 
relationship. In that same study, a single myofibril 
with 80 sarcomeres taken from the soleus muscle 
of a rat was activated and stretched onto the

Figure 1: Instability on the force-length curve 
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 descending limb region, and again all sarcomeres 
reached equilibrium at non-uniform lengths. 
Other experiments on single myofibril provide 
similar results as described above [6]–[9]. 
 
Theoretical Models on Sarcomeres 

To understand the behaviour of sarcomeres, 
mathematical models have been developed to 
obtain the force of the sarcomere as a function of 
length and other factors. A simple empirical 
model was developed by Gordon et al. in 1966, 
which is a linearization of the force-length 
relation (Fig. 3). Passive forces on the force-
length relationships can vary greatly between 
experiments, and those relationships are typically 
based on approximations of experimentally 
derived results [10]. However, a first order, 
linearized relationship can be used to model the 
passive force. 

A frequently used mechanical model of 
muscle contraction and force production is the 
Hill’s three element model [11]. Hill’s model uses 
a contractile element with two non-linear springs, 
one in series and the other in parallel with the 
contractile element. The active force, and 
corresponding force-length relationship, is 
represented by the contractile element, while the 
passive force is represented by the parallel 
spring. More advanced models have been 
developed for sarcomeres based on springs and 
dampers, accounting for more intricate 
anatomical features [12], [13]. For our purposes, 
a linearized model proved adequate.  

 

Theoretical Models on Myofibrils 
Using the simplified, linearized, force-length 

relationship from Gordon et al. 1966 [3], we 
developed a theoretical myofibril model of two 
sarcomeres in series that resulted in instability 
along the descending limb, contradicting 
experimental evidence [14]. We then developed 
two additional models to describe two 
sarcomeres in series, with the last model 
incorporating effective stiffness, which tracked 
experimental data more closely but was limited to 
two sarcomeres [14]. 

 
1.27 < 𝐿 ≤ 1.67 𝜇𝑚,   𝐹𝑎𝑐𝑡 = −2.667 + 2.10 ∗ 𝐿 
1.67 < 𝐿 ≤ 2.00 𝜇𝑚,   𝐹𝑎𝑐𝑡 =  0.04 + 0.48 ∗ 𝐿 
2.00 < 𝐿 ≤ 2.25 𝜇𝑚,   𝐹𝑎𝑐𝑡 =  1.00 
2.25 < 𝐿 ≤ 3.65 𝜇𝑚,  𝐹𝑎𝑐𝑡 =  2.592 − 0.71 ∗ 𝐿 
              𝐿 ≥ 3.65 𝜇𝑚,  𝐹𝑝𝑎𝑠 =  −5.475 + 1.5 ∗ 𝐿 

 
Figure 3: Linearized force length relationship. 

 
Zahalak, in response to these models, 

presented his own model of a myofibril using a 
comprehensive mathematical formulation of 
stability of sarcomeres in series, which led back to 
the issue of instability. [15]. Other models that 
have been developed for myofibrils include a 
statistical analysis of sarcomeres ignoring 
individual degrees of freedom that results in 
sarcomeres converging at non-uniform lengths 
only on the ascending-limb region instead of the 
descending-limb region [16]; a model focusing on 
stored mechanical energy in sarcomeres using 
contractile units in series and parallel to 
represent sarcomeres that does not capture the 
dynamic nature of sarcomeres [17]; and a model 
focusing on variable compliance of the sarcomere, 
but focuses on the forces generated by 
sarcomeres instead of the resulting lengths 

Figure 2: Stability of myofibril on the descending limb 
region of the force-length curve. Evidence of sarcomere 
length non-uniformity [4]. 
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produced [18]. 
 

Objective and Hypothesis  
The purpose of this study was to develop 

computational models to improve the 
understanding of myofibril mechanics by 
modelling sarcomeres in series with non-uniform 
length. We hypothesized that force generation by 
sarcomere units in series are not completely 
independent of each other. This hypothesis was 
tested by building a dynamic, computational 
model where sarcomere force is determined by 
the length of the sarcomere and the two adjacent 
sarcomeres. Models were developed for 
sarcomeres independent of each other, 
simulating myofibrils with two and six 
sarcomeres in series. Then, models were 
developed for sarcomeres that were dependent 
on each other. These last models were developed 
with 20 sarcomeres in series. 

 

Methods 
Overview 

The development of the computational 
myofibril models are broken into three distinct 
steps. First, all sarcomeres lengths are initialized 
to a specific region of the force-length curve. 
Then, the total forces of each sarcomere are 
obtained based on the sarcomere lengths. This 
approach is related to the force-length 
relationship, and it is this step that will vary from 
model to model. Finally, the length of the 
sarcomere is updated over a time interval based 
on the forces produced by each sarcomere. This is 
repeated until equilibrium is achieved. The 
variables used for the models are shown in Fig. 4. 

 
Initializing the Models 

The sarcomere lengths are initialized to a 
certain region in the force-length relationship. 
For the models, a difference of 0.2 m was chosen 
between the minimum and maximum sarcomere 
lengths. In the models for independent 
sarcomeres, the sarcomere lengths were 
initialized randomly within the specified region. 
In the models for dependent sarcomeres, the 
sarcomeres lengths are initialized incrementally 
from the first sarcomere with the minimum 

length to the last sarcomere with the maximum 
length. The difference in lengths between two 
adjacent sarcomeres remain constant.  

 
Models Developed  

To develop models of sarcomeres 
independent of adjacent sarcomeres, the 
linearized force length relationship from Gordon 
et al. (1966) was implemented for a 2 and 6 
sarcomere myofibril. Each model was tested on 
the ascending and the descending limb regions of 
the force-length relationship. 

For models in which sarcomeres were 
dependent on adjacent sarcomeres, myofibrils 
containing 20 sarcomeres in series were used. 
Using 20 sarcomeres allowed the models to 
discern patterns in sarcomeres groups that were 
lost with 2-6 sarcomeres, while 20 sarcomeres 
was still a small enough number to manage 
individual sarcomeres. The dependence of 
adjacent sarcomeres on each other was 
represented using a linear passive force that is 
shifted to the left or right of the force-length 
curve, depending on the lengths of the adjacent 
sarcomeres, described as follows: 

 
   𝐹𝑝𝑎𝑠 =  𝑏 + 1.5 ∗ (𝐿 − 𝑥𝑠ℎ𝑖𝑓𝑡)                                      (1) 

  𝑥𝑠ℎ𝑖𝑓𝑡 = 𝑓(𝐿𝑖−1, 𝐿𝑖+1)    

 
𝐹 = 𝑆𝑎𝑟𝑐𝑜𝑚𝑒𝑟𝑒 𝐹𝑜𝑟𝑐𝑒  
𝐿 = 𝑆𝑎𝑟𝑐𝑜𝑚𝑒𝑟𝑒 𝐿𝑒𝑛𝑔𝑡ℎ  
𝑥 = 𝑆ℎ𝑖𝑓𝑡 𝐿𝑒𝑓𝑡 𝑜𝑟 𝑅𝑖𝑔ℎ𝑡  
𝑏 =  𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑜𝑓 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝑓𝑜𝑟𝑐𝑒 𝑤ℎ𝑒𝑛 𝑥𝑠ℎ𝑖𝑓𝑡 = 0 

𝑖 = 𝑖𝑡ℎ  𝑆𝑎𝑟𝑐𝑜𝑚𝑒𝑟𝑒  
 

It is assumed that this shift is linearly 
proportional to each of the lengths, and the 
principle of superposition is imposed to combine 
the terms. Due to the symmetry on either side of 
a sarcomere, it is also assumed that the constant 
of proportionality for each length is the same, so 
the shift can be written as follows: 

 
𝑥𝑠ℎ𝑖𝑓𝑡 =  𝐶1,𝑖−1𝐿𝑖−1 + 𝐶1,𝑖+1𝐿𝑖+1  

            = 𝐶1 ∗ (𝐿𝑖−1 + 𝐿𝑖+1)                                       (2) 
 

To use these equations properly, the 
parameter ‘b’ from the passive force equation is 
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required. This ‘b’ parameter is the y-intercept of 
the passive force when there is no shift, and is 
chosen depending on one of two shift methods 
implemented. In the first method, the constant 
‘C1’ is a positive value and all shifts occur to the 
right (i.e. to increasing sarcomere lengths). To 
choose a b-value, the maximum passive force is 
chosen for when there is no shift. Based on this 
curve, the b value is calculated to be b = -2.475, 
leading to the equation   

  
𝐹𝑝𝑎𝑠 =  −2.475 + 1.5 ∗ (𝐿 − 𝑥𝑠ℎ𝑖𝑓𝑡)                   (3) 

 
Three simulations were run to see the effects 

of ‘C1’ on the model. For these simulations C1 was 
equal to 0.1, 0.2, 0.3. In the second method, the 
constant ‘C1’ was given a negative value and all 
shifts occurred to the left (i.e. shorter sarcomere 
lengths). To choose a b-value, the minimum 
passive force is chosen for when there is no shift. 
Based on this curve, the b value is calculated to be 
b = -5.475, leading to the equation  

 
𝐹𝑝𝑎𝑠 =  −5.475 + 1.5 ∗ (𝐿 − 𝑥𝑠ℎ𝑖𝑓𝑡)                   (4) 

 
Three simulations were run to see the effects 

of ‘C1’ on the model. For these simulations, C1 = -
0.15, -0.25, -0.35. 

 

Model Time Evolution 
Equilibrium Condition 

The following test was used to determine if all 
sarcomeres were at equilibrium. The average 
force of all sarcomeres was calculated and was 
used as a reference value. All forces were 
compared with the average force and an 
equilibrium tolerance was set to be ±0.005 units 

normalized to the maximum active force of 1.0 
units. If all forces were within this equilibrium 
tolerance, then the sarcomeres were assumed to 
be in equilibrium, otherwise they were not 
accepted to be in equilibrium. 

 
Sarcomere Length Update 

Assuming pseudo steady-state motion (i.e. 
initial velocity and acceleration are zero at each 
time interval), a linearized function of the change 
in length can be derived from Newton’s second 
law.  

 
∆𝐿𝑖,𝑡 = 𝐶2 ∗ [𝐹𝑖+1,𝑡 +  𝐹𝑖−1,𝑡 − 2𝐹𝑖,𝑡] (5) 

 
Where C2 is an arbitrary constant that 

determines the speed of convergence. The force 
term in the above formula matched the simplest 
numerical definition of a Laplacian. 

 
Boundary Conditions 

For sarcomeres in series, the boundary 
conditions need to be explicitly defined. Here, the 
two end sarcomeres i.e. 𝐿1 and 𝐿𝑁 , were updated 
based on the boundary conditions of the 
sarcomere. For isometric contractions, the total 
length does not change, and can be represented 
by the following:  

 
𝑑𝑥0

𝑑𝑡
= 0; 

𝑑𝑥𝑁

𝑑𝑡
= 0 (6) 

 
Isometric contractions were assumed for all 

cases. However, a similar method could be 
implemented for concentric and eccentric 
contractions. Applying isometric boundary 
conditions means that sarcomere lengths are 
updated as follows: 

Figure 4: Variable definitions for models. F is the sarcomere force produced from the ith sarcomere, L is the length of 
the ith sarcomere, and x is the total distance of the ith sarcomere from the start of the myofibril. 
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a) 

b) 

c) 

 
c) 
d) 
 

d) 
 

 
𝐿1,𝑡+∆𝑡 =  𝐿1,𝑡 +  𝐶2 ∗ (𝐹2 −  𝐹1); 𝐿𝑁,𝑡+∆𝑡 
              =  𝐿𝑁,𝑡 +  𝐶2 ∗ (𝐹𝑁−1 − 𝐹𝑁) (7) 

 

Results 
The results are based on tracking the 

sarcomere lengths and associated forces over the 
course of the simulation. For this discussion, 
stability is defined as sarcomeres that converge to 
uniform or non-uniform lengths within the 
descending limb region of the force length 
relationship, while instability is defined as 
systems that are not stable. 
Sarcomeres Independent of Adjacent Sarcomeres 

For the model with two independent 
sarcomeres in series, initializing the sarcomere 
lengths in the ascending limb region (1.6-1.8 µm) 
resulted in stability with uniform sarcomere 
length. Equilibrium for both sarcomeres was 
reached at the average initial sarcomere lengths 
of 1.70 µm and a normalized force of 0.86 (Fig. 5a 
and Fig. 5b). When initialized on the descending 
limb region (sarcomere lengths of 2.6-2.8 µm), 
instability occurred and sarcomere lengths were 
non-uniform. Equilibrium for the sarcomeres was 
reached at lengths at 1.52 µm and 3.88 µm and a 
normalized force of 0.53 (Fig. 5c and Fig. 5d). 

For the model with six independent 
sarcomeres in series, initializing the sarcomere 
lengths on the ascending limb region (1.6-1.8 µm) 
resulted in stability with uniform length. 
Equilibrium for all sarcomeres was reached at a 
length of 1.68 µm and a normalized force of 0.85 
(Fig. 6a and Fig. 6b). When initialized the 
myofibril on the descending limb region (2.6-2.8 
µm), it resulted in instability with non-uniform 
length. Equilibrium for the sarcomeres was 
reached with lengths at either 1.52 µm or 3.88 µm 
at a normalized force of 0.52 (Fig. 6c and Fig. 6d). 
 
Sarcomeres Dependent of Adjacent 
Sarcomeres 
Passive Force Shifted Towards Longer Sarcomere 
Lengths 

With twenty dependent sarcomeres in series, 
setting C1 to 0.1 and the initial sarcomere lengths 

 
Figure 5: Simulation results for two independent 
sarcomeres. The ascending limb region simulation of 
sarcomere lengths (a) and forces (b) over time shows 
stability while the descending limb region simulation of 
sarcomere lengths (c) and forces (d) over time shows 
instability. 

to 2.6-2.8 µm resulted in stability with uniform 
length. Equilibrium for all sarcomeres was 
reached with lengths at 2.70 µm and a normalized 
force of 1.44 (Fig. 7a and Fig. 7b). 

Setting C1 to 0.2 and initial sarcomere lengths 
to 2.6-2.8 µm resulted in stability with non-
uniform length. Equilibrium for the sarcomeres 
was reached with the lengths ranging between 
1.65-3.56 µm and a normalized force of 0.80 (Fig. 
7c and Fig. 7d). 

Setting C1 to 0.3 and initial sarcomere lengths 
to 2.6-2.8 µm resulted in instability with non-
uniform length. Equilibrium for the sarcomeres 
was reached with lengths at either 2.00 µm or 
3.39 µm at a normalized force of 0.99 (Fig. 7e and 
Fig. 7f).
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d) 
 

c) 
 

b) 
 

a) 
 

 
 

 
Figure 6: Simulation results for six independent 
sarcomeres. The ascending limb region simulation of 
sarcomere lengths (a) and forces (b) over time shows 
stability while the descending limb region simulation of 
sarcomere lengths (c) and forces (d) over time shoes 
instability.  

Passive Force Shifted Towards Shorter Sarcomere 
Lengths  

With twenty dependent sarcomeres in series, 
setting C1 to -0.15 and initial sarcomere lengths to 
2.6-2.8 µm resulted in instability with non-
uniform length. Equilibrium for the sarcomeres 
was reached with lengths at either 1.68 µm or 
3.71 µm at a normalized force of 0.84 (Fig. 8a and 
Fig. 8b). Setting C1 to -0.25 and initial sarcomere 
lengths to 2.6-2.8 µm resulted in stability with 
non-uniform length. Equilibrium for the 
sarcomeres was reached with the lengths ranging 
between 2.03-3.97 µm and a normalized force of 
1.23 (Fig. 8c and Fig. 8d). Setting C1 to -0.35 and 
initial sarcomere lengths to 2.6-2.8 µm resulted in 
instability with non-uniform length. Equilibrium 

for the sarcomeres was reached with the lengths 
ranging between 1.60-4.33 µm and a normalized 
force of 1.86 (Fig. 8e and Fig. 8f). 

 

Discussion 
Sarcomeres Independent of Adjacent Sarcomeres 

The purpose of developing the models of 
independent sarcomeres was to lay the 
foundations of the model and verify the instability 
of the descending limb based on current theory. 
The two sarcomeres in series allowed for easy 
model development and to show that there was 
stability on the ascending limb and instability on 
the descending limb of the force-length 
relationship. This model was successfully 
implemented and the results were as expected. 
The six sarcomere model was implemented to 
test the generalization of two sarcomere model to 
an “n” sarcomere model scenario. Models were 
tested for up to 100 sarcomeres in series and 
produced the same results as the six sarcomere 
model, that is, instability on the descending limb 
region. 

 
Sarcomeres Dependent on Adjacent Sarcomeres 

Determining any biological significance of 
these solutions requires an understanding of the 
models. The simulations illustrated that there 
exist mathematical solutions where the 
sarcomeres are stable and, at equilibrium, have 
uniform lengths, stable with non-uniform lengths, 
and unstable. These different outcomes depend 
on the constant C1, which is the linear scaling 
factor used for the shifting of the passive force. C1 
has a different effect depending on whether there 
is a right (passive force is shifted towards longer 
sarcomeres) or left (towards shorter sarcomeres) 
shift.  

 
Passive Force Shifted Towards Longer Sarcomere 
Lengths 

Decreasing C1 minimizes the contribution of 
the shifting passive force has on the total 
sarcomere force, and the passive force remains 
further to the left on the force-length relationship. 
If C1 is too low, as with the simulation using 
C1=0.1, the passive force is too large to have 
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f) 
 

e) 
 

d) 
 

c) 
 

b) 
 

a) 
 

e) 
 

d) 
 

c) 
 

b) 
 

a) 
 

f) 
 

 
Figure 7: Simulation results for twenty dependent 
sarcomeres with passive force shifting to the right with 
constants C = 0.1 with sarcomere lengths (a) and forces (b) 
over time, C = 0.2 with sarcomere lengths (c) and forces (d) 
over tine, C=0.3, with sarcomere lengths (e) and forces over 
time (f). 

biological significance. If C1 is too high, as with the 
simulation using C2 = 0.3, the passive force 
becomes too small resulting in instability

 

 
Figure 8: Simulation results for twenty dependent 
sarcomeres with passive force shifting to the left with 
constants C = -0.15 with sarcomere lengths (a) and forces 
(b) over time, C = -0.25 with sarcomere lengths (c) and 
forces (d) over time, C=-0.35, with sarcomere lengths (e) 
and forces over time (f). 

due to the active forces. However, if C2 is chosen 
to balance passive and active forces as with C2 = 
0.2, then stability is reached and sarcomere 
lengths at equilibrium are non-uniform. This 
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theoretical result matches that observed 
experimentally in single myofibrils [4]. 

Mathematically, this result is explained as 
follows: if sarcomeres i ± 1 are longer than 
sarcomere i, then sarcomere i would have its 
passive force shifted far to the right, decreasing 
its passive force. On the descending limb, 
sarcomere i would have a larger active force. This 
balance between active and passive force creates 
stability. 

Biologically, this result may be interpreted as 
follows: some mechanism of stretching an 
adjacent sarcomere causes the passive force of 
the sarcomere to decrease. Speculatively, there 
could be some interconnecting structure, a 
filamentous protein for example, that could 
achieve the desired interrelation between 
adjacent sarcomeres. Conclusively, if this 
interconnecting relation exists, then there is a 
mathematical solution that creates stability at 
non-uniform lengths on the descending limb 
region of the force-length relationship. 

 
Passive Force Shifted Towards Shorter Sarcomere 
Lengths  

Decreasing C1 minimizes the contribution of 
the shift of passive force on the total (active and 
passive) sarcomere force. For this scenario, the 
passive force remains further to the right on the 
force-length relationship. 

If C1 is too low, as with the simulation with 
C1=-0.15, then the passive force is too small and 
instability similarly to the independent 
sarcomere models occurs. If C1 is too large, as 
with the simulation with both C1=-0.25 and C1=-
0.35, then the passive force becomes too large to 
have biological significance. It is noted that even 
though the forces are too high, stability with non-
uniform lengths can be achieved on the 
descending limb region.  

Mathematically, if sarcomeres i ± 1 are longer 
than sarcomere i, then sarcomere i would have its 
passive force shifted far to the left, increasing its 
passive force. However, sarcomeres i ± 1 still have 
a larger passive force. On the descending limb, 
sarcomere i would have a larger active force. 
Therefore, this balance between active and 
passive forces results in stability. The distribution 

of sarcomere lengths along the myofibril 
oscillates symmetrically similar to f(x) = x*sin(x). 
Similar to the right shift of the passive force, there 
exists a mathematical solution with stability at 
non-uniform lengths on the descending limb 
region of the force-length relationship. However, 
the total force generated is too high to have 
biological significance. 

 
Summary 

Overall, the independent models behaved as 
expected with the instability on the descending 
limb of the force-length relationship. Between the 
two dependent models, the passive force shifted 
towards longer sarcomere lengths (i.e. constant 
C1 is positive), proved to be a better model 
because both stability was achieved in the 
descending limb of the force-length relationship, 
and the forces produced by each sarcomere was 
more reasonable (under a value of 1).  

 

Conclusion and Future Work 
Sarcomeres in series are theoretically 

predicted to be unstable on the descending limb 
region of the force-length relationship. However, 
experimental evidence has shown that 
sarcomeres can be stable on the descending limb 
region, typically with small amounts of non-
uniformity between the sarcomeres [4]. The 
hypothesis was to test the long-held assumptions 
that sarcomeres are independent units of force 
generators by developing computational models 
of dependent sarcomeres in series. The major 
finding of these models was that mathematically, 
sarcomeres with a variable passive force can 
reach equilibrium at different lengths from each 
other on the descending limb of the force-length 
relationship. The next stages in this work is to 
continue developing models for sarcomeres in 
series. First, a variable passive force slope change 
will be implemented, which varies the slope of the 
passive force rather than the sarcomere length at 
which passive forces is engaged. Then, various 
initial conditions need to be implemented to 
further test the models that have already been 
developed, such as random initial lengths or 
initial lengths following a normal distribution. 
Once these models have been developed, they can 
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be interpreted mathematically, mechanically and 
physiologically.  
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